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We report here the use of emission measurements to calculate
rate constants for electron transfer in polypyridyl complexes of [(4,4-_(Me)szy)Rexr(co)S(BfQD)p* 23ev
Re. The complexes [(4,4Me)bpy)Re(COY(BIQD)])(OTH)
(BIQD is benzfjisoquinoline-5,10-dione; OTf is GSG;7),
[(4,4-(Me)bpy)Re(CO}](AFA) (AFA2~ is 2,6-dioxyan-

thraquinone dianion), and [(4:4Bu).bpy)Re(CO)OQD)]- AT T R R
(OTf) (OQD is 1-methyl-6-oxyquinoliné¥ were chosen for
study as examples where electron transfer acceptor ligands and [(44-(Mo),bpy)ReHCO) (BIQD 00ey

a metal-to-ligand charge transfer (MLCT) chromophore are

linked with moderate to weak electronic coupling. energy. The electron transfer rate constant is given by

o o
‘o TK@Q In ket = In v + IN[F(calc)] (1)
000 oo, OO | |
s Chy ver is the frequency factor and IR(calc)] is the electron transfer

o]
BIQD AFA2- 0QD barrier. In the nonadiabatic limitet is related toHpa, the

delocalization energy arising from electronic coupling between
Absorption spectra for these complexes are typical of related donor and acceptor, By
Re complexes. For [(4/4Me).bpy)Re(CO)BIQD)](OTf) in

1,2-dichloroethane (DCE) a band at 339 nm arises from'a Re 27Hp?
— 4,4-(Me),bpy transition and lower energy bands from' Re Ver="p )
— BIQD transitions.

Transient absorption changes following 35850 nm laser With a single high or medium frequency coupled vibration
flash photolysis in DCE are consistent with formation of MLCT o average mode witko > fiwy, andhaoy > ksT, In[F(calc)]
redox-separated states based on BIQD, AFAr OQD as s given by the energy gap law result in eq 3. In this equation,

acceptor ligands. For example, for the BIQD complex a double g, "andhawy, are the electron-vibrational coupling constant and
maximum appears at 600 and 650 nm similar to the absorptlonquamum spacing for the coupled modg is the sum of the
spectrum of [(4,4(Me)bpy)Ré(CO)(BIQD")] generated by  gpjvent reorganizational energgof and the reorganizational
electrochemical reduction at0.34 V vs SSCE in 0.1 M [Nt energy contributed by coupled low-frequency vibrations treated
CaHg)4](PF) (TBAH) in DCE (n = 1.0). The complex  cjassically 4;,). Eo(=|AG®|—b) is thev* = 0tov = O energy
undergoe/s reducti &, = —0.39 V (BIQD"") and—1.31 (4,4- gap®’ Multiple vibrations are coupled to the transition between
(Me)2bpy”™) by cyclic voltammetry. For the BIQD compleX,  states. The mode-averaging procedure used here has been used

the redox-separated state is formed by a combination of directgccessfully for nonradiative decay of MLCT excited states,
Re — LA excitation and Re— 4,4-(Me)bpy excitation for example&®

followed by 4,4-(Me),bpy— LA electron transfer, as in Scheme

13 In[F(calc)]=

The redox-separated states return to the ground state by a vE, )
combination of radiativek in Scheme 1) and nonradiative — ZIn@rhwyE) — Sy — 57— + (&1) (ks TAp) (3)
processesk, in Scheme 1) with the latter occurring by electron 2 hwy, hay

transfer,ker = kp. Values are given in Table 1.

The appearance of emission allows an important test to be - E 1 4
made of electron transfer theory. These reactions occur deeply y=1in Sufioy (4)
in the inverted regichwith —AG° > 1 as shown by the analysis
below. AG° is the free energy change ahthe reorganizational All of the quantities in eq 3 can be evaluated by Franck

T Present address: Department of Chemistry, Indiana University, Bloom- Condon analysis of the emission spectra. The results are given
ington, IN 47405-4001. in Table 1,Avq1/2 = (ks TAb16In(2)F. Hpa can be calculated
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Table 1. Calculated and Experimental Quantities for Electron Transfer in Scheme 1 in 1,2-Dichloroethane at Room Temperature

complex

BIQD AFA2~ 0oQD
Eem (cm™1)2 14530 15060 13370
7 (nsy 25 5.6x 10° 1.5x 10*
PenlC 1.8x 1073 1x10°8 5x 107
@301 (cm™3) 2.48x 10% 2.86x 10% 1.80x 10%
Eo (cm™2)d 14920 15490 13610
Su 0.81 0.95 1.11
AVo 112 (M) 2900 2830 1770
Awwm (cm1)d 1625 1500 1376
b (cm)d 3660 3500 1360
Eaps(cm™1)® 23560 23910 17870
€max (M~ cm™t)e 2.2x 10 7.9%x 1072 1.6x 1072
Avg 1 {abs) (cnr)e 3834 4052 3170
d A 6 6 5
Hpa (cm™?) 153 9.5 3.9
In[F(calc)] —21.65 —22.84 —21.43
Ke obs(S7H)° 4.0x 10 1.8x 1P 6.6 x 10*
KeT calc (S71)9 1.1x 107 1.3x 104 8.9x 10

2Energy of the emission maximurhFrom time-resolved absorption measuremehBased on [(bpy)RECO)(4-ethylpyridine)](PE) in 1,2-
dichloroethane or [Os(bpyfPFs)2 in acetonitrile at 296 K as standart$. ¢ By emission spectral fittin§. € Molar extinction coefficient, maximum,
and bandwidth for absorptidm, in Scheme 1.emax from eq 5;Eas~ Eo + Suhiwm + 240;2 A Aabs) taken as the experimental band width at
half height for the emission bantiDistance between the Rien and the center of the LA acceptor, estimated from crystal structure data of related

complexes? Calculated from eq 1.

from the emission quantum yielgd,) and lifetime & = ¢gen!

7) from the Strickler-Berg equation (eq 5),and an equation
originally applied to mixed-valence compounds by Hush, eq

7_10,11
B o 23y ma YoyA30S)
k = (3.05x 107’ °0 e ®)
S 3I) dv
2.06x 102 -
Hpa = +(€ma>£absAVo,1/z(abs))U2 Q)
These give
2 05 Eabs2 -3
Hon” = (139 10| 5] Tk (8)

In eq 8,n is the index of refraction of the solvent amidthe
electron transfer distance. The quantitigs, Avo 1/{abs), and

Given the energy gaps for AFAX — Re' and OQD~ —
Ré! electron transferket is remarkably slowker™1 = 7= 5.6
and 15us). The photochemically produced redox equivalents
are stored for extended periods in these structurally simple
chromophore-quencher complexes. The long lifetimes are a
direct consequence of weak electronic coupling through the
aryloxy bridge withHps = 9.5 (AFA®™) and 3.9 (OQD)
Cm71_15

From emission spectral analysis, the magnitudécof; for
OQD~ — Ré€' emission is typical of values found for other
polypyridyl and pyridinium acceptofst® Awy is higher for
the quinone acceptor because of contributions from quinoid
stretching modé&2which appear at 1612 cri (C=C) and 1683
cm~1 (C=0) in [(4,4-(Me)bpy)Re(CO)BIQD)]™ by reso-
nance Raman measuremelis Ap is also higher for the quinone
acceptors, presumably due to strong specific interactions
between solvent molecules and the quinoid O-atoms in the
semiquinone radical anion part of the redox-separated states
(Scheme 1).
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